Le Répertoire National des Certifications Professionnelles (RNCP)

Résumé descriptif de la certification Code RNCP: 20606

Intitulé

L'accès à la certification n'est plus possible

MASTER : MASTER Innovation Technologique, Sp.Ingénierie Numérique en Physique Appliquée et en Mécanique

AUTORITÉ RESPONSABLE DE LA CERTIFICATION QUALITÉ DU(ES) SIGNATAIRE(S) DE LA CERTIFICATION Université du Maine - Le Mans Président de l'université du Maine, Recteur, Chancelier des Universités

Niveau et/ou domaine d'activité

I (Nomenclature de 1967)

7 (Nomenclature Europe)

Convention(s):

Code(s) NSF:

200 Technologies industrielles fondamentales

Formacode(s):

Résumé du référentiel d'emploi ou éléments de compétence acquis

Conception et calcul numérique dans l'industrie et la recherche

Modélisation d'un problème couplé en physique appliquée et en mécanique

Choix des variables pertinentes, mise en équations

Utilisation de logiciels de type industriel en éléments finis, volumes finis, différences finies

Modélisation de mécanismes et de systèmes rigides

Modélisation de problèmes avec non-linéarités matérielles ou géométriques : crash, emboutissage

Modélisation d'un problème couplé : interaction fluide-structure

Choix d'une architecture d'ordinateur haute performances adapté à un problème donné

Ecriture de codes raccords ou de modules utilisateur de codes industriels

Gestion de projet

Connaissance du fonctionnement d'une entreprise, notions de gestion

Maîtrise du vocabulaire technique correspondant en anglais

Secteurs d'activité ou types d'emplois accessibles par le détenteur de ce diplôme, ce titre ou ce certificat

Industries mécaniques, automobiles, aéronautiques, navales, armement

Centres de recherche et de développement

Laboratoires de recherche

Cabinets de consultants en ingénierie

Editeurs de logiciels de modélisation et calcul numérique

Consultant en calcul

Etudiant-chercheur

Technico-commercial

Assimilé ingénieur

Chef de projet en calcul

Codes des fiches ROME les plus proches :

H1206: Management et ingénierie études, recherche et développement industriel

K2402 : Recherche en sciences de l'univers, de la matière et du vivant

<u>F1106</u> : Ingénierie et études du BTP <u>D1407</u> : Relation technico-commerciale

Modalités d'accès à cette certification

Descriptif des composantes de la certification :

RAN02	2	Mise à niveau- maths
RAN06	2	Mise à niveau - mécanique
RAN07	2	Mise à niveau - Technologie et conception 2D
AC1-02a	3	Mécanique des milieux continus
AC1-02b	3	Mécanique des fluides
PNANO	4	Analyse numérique et calcul scientifique
AC1-03	4	Vibrations dans les systèmes continus
AC1-10	3	Mécanique analytique (obligatoire)
NPM1-1	4	CAO

AC1-08	3	Thermique (obligatoire)
AC1-13ab	10	Projet et expression scientifique et technique
AC1-14	2	Anglais
AC1-15	2	Programmation, algorithmique, Matlab, labview
NPM2-2	3	Logiciels intégrés de conception (CATIA)
NPM2-3	2	Modélisation de systèmes rigides (ADAMS)
AC1-22	2	Langages compilés (F90, C++)
AC1-21	2	Éléments finis
AC1-19	3	Mécanique des contacts
AC1-25	2	Biomécanique
AC1-30	2	Philosophie des sciences (au choix)
AC1-31	2	Analyse vibratoire et machines tournantes (au choix)
NPM3-1	3	Calcul scientifique hautes performances
NPM3-2	3	Éléments finis avancés et problèmes couplés
NPM3-3	3	Volumes finis et mécanique des fluides numérique
NPM3-4	3	Systèmes rigides et logiciels de calcul formel (au choix)
NPM3-5	3	Analyse modale et vibrations en éléments finis
AC-11a	3	méthodes numériques en acoustique et vibrations
NPM3-6	12	Logiciels industriels, problèmes couplés et multiphysiques, recalage calcul-essais
NPM3-7	3	Anglais
NPM3-8	10	Projet collectif
NPM3-9	20	Stage

Validité des composantes acquises : non prévue

CONDITIONS D'INSCRIPTION À LA CERTIFICATION		NON	COMPOSITION DES JURYS
Après un parcours de formation sous statut d'élève ou d'étudiant	X		Jury universitaire
En contrat d'apprentissage		Χ	
Après un parcours de formation continue	Х		Jury universitaire
En contrat de professionnalisation	Х		Jury universitaire
Par candidature individuelle	Х		Possible pour partie du diplôme par VES ou VAP
Par expérience dispositif VAE	Х		Jury universitaire

	OUI	NON
Accessible en Nouvelle Calédonie	Χ	
Accessible en Polynésie Française	Χ	

ACCORDS EUROPÉENS OU INTERNATIONAUX
Master européen avec l'université d'Ostrava (Tchéquie)
· ·

Base légale

Référence du décret général :

Référence arrêté création (ou date 1er arrêté enregistrement) :

Arrêté du 25 avril 2002

Référence du décret et/ou arrêté VAE :

Références autres :

Pour plus d'informations

Statistiques:

 $http://www.univ-lemans.fr/fr/formation/orientation_et_insertion_professionnelle/le-devenir-des-diplomes-de-lp-et-master.html$

Autres sources d'information :

Université du Maine

Lieu(x) de certification :

Université du Maine - Le Mans : Pays de la Loire - Sarthe (72) [Le Mans]

Le Mans, Ostrava

Lieu(x) de préparation à la certification déclarés par l'organisme certificateur :

Université du Maine

Avenue Messiaen

72085 Le Mans Cedex

Historique de la certification :

DESS créé en 2000 ; master « Modélisation Numérique et Réalité Virtuelle » de 2004 à 2008- master « Physique Appliquée et Modélisation » de 2008 à 2012